ModelPackage

sagemaker.services.k8s.aws/v1alpha1

TypeLink
GoDocsagemaker-controller/apis/v1alpha1#ModelPackage

Metadata

PropertyValue
ScopeNamespaced
KindModelPackage
ListKindModelPackageList
Pluralmodelpackages
Singularmodelpackage

A versioned model that can be deployed for SageMaker inference.

Spec

additionalInferenceSpecifications:
  containers:
    additionalS3DataSource: 
      compressionType: string
      s3DataType: string
      s3URI: string
    containerHostname: string
    environment: {}
    framework: string
    frameworkVersion: string
    image: string
    imageDigest: string
    modelDataURL: string
    modelInput: 
      dataInputConfig: string
    nearestModelName: string
    productID: string
  description: string
  name: string
  supportedContentTypes:
  - string
  supportedRealtimeInferenceInstanceTypes:
  - string
  supportedResponseMIMETypes:
  - string
  supportedTransformInstanceTypes:
  - string
approvalDescription: string
certifyForMarketplace: boolean
clientToken: string
customerMetadataProperties: {}
domain: string
driftCheckBaselines: 
  bias: 
    configFile: 
      contentDigest: string
      contentType: string
      s3URI: string
    postTrainingConstraints: 
      contentDigest: string
      contentType: string
      s3URI: string
    preTrainingConstraints: 
      contentDigest: string
      contentType: string
      s3URI: string
  explainability: 
    configFile: 
      contentDigest: string
      contentType: string
      s3URI: string
    constraints: 
      contentDigest: string
      contentType: string
      s3URI: string
  modelDataQuality: 
    constraints: 
      contentDigest: string
      contentType: string
      s3URI: string
    statistics: 
      contentDigest: string
      contentType: string
      s3URI: string
  modelQuality: 
    constraints: 
      contentDigest: string
      contentType: string
      s3URI: string
    statistics: 
      contentDigest: string
      contentType: string
      s3URI: string
inferenceSpecification: 
  containers:
    additionalS3DataSource: 
      compressionType: string
      s3DataType: string
      s3URI: string
    containerHostname: string
    environment: {}
    framework: string
    frameworkVersion: string
    image: string
    imageDigest: string
    modelDataURL: string
    modelInput: 
      dataInputConfig: string
    nearestModelName: string
    productID: string
  supportedContentTypes:
  - string
  supportedRealtimeInferenceInstanceTypes:
  - string
  supportedResponseMIMETypes:
  - string
  supportedTransformInstanceTypes:
  - string
metadataProperties: 
  commitID: string
  generatedBy: string
  projectID: string
  repository: string
modelApprovalStatus: string
modelMetrics: 
  bias: 
    postTrainingReport: 
      contentDigest: string
      contentType: string
      s3URI: string
    preTrainingReport: 
      contentDigest: string
      contentType: string
      s3URI: string
    report: 
      contentDigest: string
      contentType: string
      s3URI: string
  explainability: 
    report: 
      contentDigest: string
      contentType: string
      s3URI: string
  modelDataQuality: 
    constraints: 
      contentDigest: string
      contentType: string
      s3URI: string
    statistics: 
      contentDigest: string
      contentType: string
      s3URI: string
  modelQuality: 
    constraints: 
      contentDigest: string
      contentType: string
      s3URI: string
    statistics: 
      contentDigest: string
      contentType: string
      s3URI: string
modelPackageDescription: string
modelPackageGroupName: string
modelPackageName: string
samplePayloadURL: string
skipModelValidation: string
sourceAlgorithmSpecification: 
  sourceAlgorithms:
  - algorithmName: string
    modelDataURL: string
tags:
- key: string
  value: string
task: string
validationSpecification: 
  validationProfiles:
  - profileName: string
    transformJobDefinition: 
      batchStrategy: string
      environment: {}
      maxConcurrentTransforms: integer
      maxPayloadInMB: integer
      transformInput: 
        compressionType: string
        contentType: string
        dataSource: 
          s3DataSource: 
            s3DataType: string
            s3URI: string
        splitType: string
      transformOutput: 
        accept: string
        assembleWith: string
        kmsKeyID: string
        s3OutputPath: string
      transformResources: 
        instanceCount: integer
        instanceType: string
        volumeKMSKeyID: string
  validationRole: string
FieldDescription
additionalInferenceSpecifications
Optional
array
An array of additional Inference Specification objects. Each additional Inference
Specification specifies artifacts based on this model package that can be
used on inference endpoints. Generally used with SageMaker Neo to store the
compiled artifacts.
additionalInferenceSpecifications.[]
Required
object
A structure of additional Inference Specification. Additional Inference Specification
specifies details about inference jobs that can be run with models based
on this model package
additionalInferenceSpecifications.[].containers.[]
Required
object
Describes the Docker container for the model package.
additionalInferenceSpecifications.[].containers.[].additionalS3DataSource.compressionType
Optional
string
additionalInferenceSpecifications.[].containers.[].additionalS3DataSource.s3DataType
Optional
string
additionalInferenceSpecifications.[].containers.[].additionalS3DataSource.s3URI
Optional
string
additionalInferenceSpecifications.[].containers.[].containerHostname
Optional
string
additionalInferenceSpecifications.[].containers.[].environment
Optional
object
additionalInferenceSpecifications.[].containers.[].framework
Optional
string
additionalInferenceSpecifications.[].containers.[].frameworkVersion
Optional
string
additionalInferenceSpecifications.[].containers.[].image
Optional
string
additionalInferenceSpecifications.[].containers.[].imageDigest
Optional
string
additionalInferenceSpecifications.[].containers.[].modelDataURL
Optional
string
additionalInferenceSpecifications.[].containers.[].modelInput
Optional
object
Input object for the model.
additionalInferenceSpecifications.[].containers.[].modelInput.dataInputConfig
Optional
string
additionalInferenceSpecifications.[].containers.[].nearestModelName
Optional
string
additionalInferenceSpecifications.[].containers.[].productID
Optional
string
additionalInferenceSpecifications.[].description
Optional
string
additionalInferenceSpecifications.[].name
Optional
string
additionalInferenceSpecifications.[].supportedContentTypes
Optional
array
additionalInferenceSpecifications.[].supportedContentTypes.[]
Required
string
additionalInferenceSpecifications.[].supportedRealtimeInferenceInstanceTypes.[]
Required
string
additionalInferenceSpecifications.[].supportedResponseMIMETypes.[]
Required
string
additionalInferenceSpecifications.[].supportedTransformInstanceTypes.[]
Required
string
certifyForMarketplace
Optional
boolean
Whether to certify the model package for listing on Amazon Web Services Marketplace.


This parameter is optional for unversioned models, and does not apply to
versioned models.
clientToken
Optional
string
A unique token that guarantees that the call to this API is idempotent.
customerMetadataProperties
Optional
object
The metadata properties associated with the model package versions.
domain
Optional
string
The machine learning domain of your model package and its components. Common
machine learning domains include computer vision and natural language processing.
driftCheckBaselines
Optional
object
Represents the drift check baselines that can be used when the model monitor
is set using the model package. For more information, see the topic on Drift
Detection against Previous Baselines in SageMaker Pipelines (https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines-quality-clarify-baseline-lifecycle.html#pipelines-quality-clarify-baseline-drift-detection)
in the Amazon SageMaker Developer Guide.
driftCheckBaselines.bias
Optional
object
Represents the drift check bias baselines that can be used when the model
monitor is set using the model package.
driftCheckBaselines.bias.configFile
Optional
object
Contains details regarding the file source.
driftCheckBaselines.bias.configFile.contentDigest
Optional
string
driftCheckBaselines.bias.configFile.contentType
Optional
string
driftCheckBaselines.bias.configFile.s3URI
Optional
string
driftCheckBaselines.bias.postTrainingConstraints
Optional
object
Details about the metrics source.
driftCheckBaselines.bias.postTrainingConstraints.contentDigest
Optional
string
driftCheckBaselines.bias.postTrainingConstraints.contentType
Optional
string
driftCheckBaselines.bias.postTrainingConstraints.s3URI
Optional
string
driftCheckBaselines.bias.preTrainingConstraints
Optional
object
Details about the metrics source.
driftCheckBaselines.bias.preTrainingConstraints.contentDigest
Optional
string
driftCheckBaselines.bias.preTrainingConstraints.contentType
Optional
string
driftCheckBaselines.bias.preTrainingConstraints.s3URI
Optional
string
driftCheckBaselines.explainability
Optional
object
Represents the drift check explainability baselines that can be used when
the model monitor is set using the model package.
driftCheckBaselines.explainability.configFile
Optional
object
Contains details regarding the file source.
driftCheckBaselines.explainability.configFile.contentDigest
Optional
string
driftCheckBaselines.explainability.configFile.contentType
Optional
string
driftCheckBaselines.explainability.configFile.s3URI
Optional
string
driftCheckBaselines.explainability.constraints
Optional
object
Details about the metrics source.
driftCheckBaselines.explainability.constraints.contentDigest
Optional
string
driftCheckBaselines.explainability.constraints.contentType
Optional
string
driftCheckBaselines.explainability.constraints.s3URI
Optional
string
driftCheckBaselines.modelDataQuality
Optional
object
Represents the drift check data quality baselines that can be used when the
model monitor is set using the model package.
driftCheckBaselines.modelDataQuality.constraints
Optional
object
Details about the metrics source.
driftCheckBaselines.modelDataQuality.constraints.contentDigest
Optional
string
driftCheckBaselines.modelDataQuality.constraints.contentType
Optional
string
driftCheckBaselines.modelDataQuality.constraints.s3URI
Optional
string
driftCheckBaselines.modelDataQuality.statistics
Optional
object
Details about the metrics source.
driftCheckBaselines.modelDataQuality.statistics.contentDigest
Optional
string
driftCheckBaselines.modelDataQuality.statistics.contentType
Optional
string
driftCheckBaselines.modelDataQuality.statistics.s3URI
Optional
string
driftCheckBaselines.modelQuality
Optional
object
Represents the drift check model quality baselines that can be used when
the model monitor is set using the model package.
driftCheckBaselines.modelQuality.constraints
Optional
object
Details about the metrics source.
driftCheckBaselines.modelQuality.constraints.contentDigest
Optional
string
driftCheckBaselines.modelQuality.constraints.contentType
Optional
string
driftCheckBaselines.modelQuality.constraints.s3URI
Optional
string
driftCheckBaselines.modelQuality.statistics
Optional
object
Details about the metrics source.
driftCheckBaselines.modelQuality.statistics.contentDigest
Optional
string
driftCheckBaselines.modelQuality.statistics.contentType
Optional
string
driftCheckBaselines.modelQuality.statistics.s3URI
Optional
string
inferenceSpecification
Optional
object
Specifies details about inference jobs that can be run with models based
on this model package, including the following:


* The Amazon ECR paths of containers that contain the inference code and
model artifacts.


* The instance types that the model package supports for transform jobs
and real-time endpoints used for inference.


* The input and output content formats that the model package supports
for inference.
inferenceSpecification.containers
Optional
array
inferenceSpecification.containers.[]
Required
object
Describes the Docker container for the model package.
inferenceSpecification.containers.[].additionalS3DataSource.compressionType
Optional
string
inferenceSpecification.containers.[].additionalS3DataSource.s3DataType
Optional
string
inferenceSpecification.containers.[].additionalS3DataSource.s3URI
Optional
string
inferenceSpecification.containers.[].containerHostname
Optional
string
inferenceSpecification.containers.[].environment
Optional
object
inferenceSpecification.containers.[].framework
Optional
string
inferenceSpecification.containers.[].frameworkVersion
Optional
string
inferenceSpecification.containers.[].image
Optional
string
inferenceSpecification.containers.[].imageDigest
Optional
string
inferenceSpecification.containers.[].modelDataURL
Optional
string
inferenceSpecification.containers.[].modelInput
Optional
object
Input object for the model.
inferenceSpecification.containers.[].modelInput.dataInputConfig
Optional
string
inferenceSpecification.containers.[].nearestModelName
Optional
string
inferenceSpecification.containers.[].productID
Optional
string
inferenceSpecification.supportedContentTypes
Optional
array
inferenceSpecification.supportedContentTypes.[]
Required
string
inferenceSpecification.supportedRealtimeInferenceInstanceTypes.[]
Required
string
inferenceSpecification.supportedResponseMIMETypes.[]
Required
string
inferenceSpecification.supportedTransformInstanceTypes.[]
Required
string
metadataProperties.commitID
Optional
string
metadataProperties.generatedBy
Optional
string
metadataProperties.projectID
Optional
string
metadataProperties.repository
Optional
string
modelApprovalStatus
Optional
string
Whether the model is approved for deployment.


This parameter is optional for versioned models, and does not apply to unversioned
models.


For versioned models, the value of this parameter must be set to Approved
to deploy the model.
modelMetrics
Optional
object
A structure that contains model metrics reports.
modelMetrics.bias
Optional
object
Contains bias metrics for a model.
modelMetrics.bias.postTrainingReport
Optional
object
Details about the metrics source.
modelMetrics.bias.postTrainingReport.contentDigest
Optional
string
modelMetrics.bias.postTrainingReport.contentType
Optional
string
modelMetrics.bias.postTrainingReport.s3URI
Optional
string
modelMetrics.bias.preTrainingReport
Optional
object
Details about the metrics source.
modelMetrics.bias.preTrainingReport.contentDigest
Optional
string
modelMetrics.bias.preTrainingReport.contentType
Optional
string
modelMetrics.bias.preTrainingReport.s3URI
Optional
string
modelMetrics.bias.report
Optional
object
Details about the metrics source.
modelMetrics.bias.report.contentDigest
Optional
string
modelMetrics.bias.report.contentType
Optional
string
modelMetrics.bias.report.s3URI
Optional
string
modelMetrics.explainability
Optional
object
Contains explainability metrics for a model.
modelMetrics.explainability.report
Optional
object
Details about the metrics source.
modelMetrics.explainability.report.contentDigest
Optional
string
modelMetrics.explainability.report.contentType
Optional
string
modelMetrics.explainability.report.s3URI
Optional
string
modelMetrics.modelDataQuality
Optional
object
Data quality constraints and statistics for a model.
modelMetrics.modelDataQuality.constraints
Optional
object
Details about the metrics source.
modelMetrics.modelDataQuality.constraints.contentDigest
Optional
string
modelMetrics.modelDataQuality.constraints.contentType
Optional
string
modelMetrics.modelDataQuality.constraints.s3URI
Optional
string
modelMetrics.modelDataQuality.statistics
Optional
object
Details about the metrics source.
modelMetrics.modelDataQuality.statistics.contentDigest
Optional
string
modelMetrics.modelDataQuality.statistics.contentType
Optional
string
modelMetrics.modelDataQuality.statistics.s3URI
Optional
string
modelMetrics.modelQuality
Optional
object
Model quality statistics and constraints.
modelMetrics.modelQuality.constraints
Optional
object
Details about the metrics source.
modelMetrics.modelQuality.constraints.contentDigest
Optional
string
modelMetrics.modelQuality.constraints.contentType
Optional
string
modelMetrics.modelQuality.constraints.s3URI
Optional
string
modelMetrics.modelQuality.statistics
Optional
object
Details about the metrics source.
modelMetrics.modelQuality.statistics.contentDigest
Optional
string
modelMetrics.modelQuality.statistics.contentType
Optional
string
modelMetrics.modelQuality.statistics.s3URI
Optional
string
modelPackageDescription
Optional
string
A description of the model package.
modelPackageGroupName
Optional
string
The name or Amazon Resource Name (ARN) of the model package group that this
model version belongs to.


This parameter is required for versioned models, and does not apply to unversioned
models.
modelPackageName
Optional
string
The name of the model package. The name must have 1 to 63 characters. Valid
characters are a-z, A-Z, 0-9, and - (hyphen).


This parameter is required for unversioned models. It is not applicable to
versioned models.
samplePayloadURL
Optional
string
The Amazon Simple Storage Service (Amazon S3) path where the sample payload
is stored. This path must point to a single gzip compressed tar archive (.tar.gz
suffix). This archive can hold multiple files that are all equally used in
the load test. Each file in the archive must satisfy the size constraints
of the InvokeEndpoint (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html#API_runtime_InvokeEndpoint_RequestSyntax)
call.
skipModelValidation
Optional
string
Indicates if you want to skip model validation.
sourceAlgorithmSpecification
Optional
object
Details about the algorithm that was used to create the model package.
sourceAlgorithmSpecification.sourceAlgorithms
Optional
array
sourceAlgorithmSpecification.sourceAlgorithms.[]
Required
object
Specifies an algorithm that was used to create the model package. The algorithm
must be either an algorithm resource in your SageMaker account or an algorithm
in Amazon Web Services Marketplace that you are subscribed to.
sourceAlgorithmSpecification.sourceAlgorithms.[].modelDataURL
Optional
string
tags
Optional
array
A list of key value pairs associated with the model. For more information,
see Tagging Amazon Web Services resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
in the Amazon Web Services General Reference Guide.


If you supply ModelPackageGroupName, your model package belongs to the model
group you specify and uses the tags associated with the model group. In this
case, you cannot supply a tag argument.
tags.[]
Required
object
A tag object that consists of a key and an optional value, used to manage
metadata for SageMaker Amazon Web Services resources.

You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AddTags.html).

For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html). For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy (https://d1.awsstatic.com/whitepapers/aws-tagging-best-practices.pdf). || tags.[].key
Optional | string
| | tags.[].value
Optional | string
| | task
Optional | string
The machine learning task your model package accomplishes. Common machine
learning tasks include object detection and image classification. The following
tasks are supported by Inference Recommender: “IMAGE_CLASSIFICATION” | “OBJECT_DETECTION”
| “TEXT_GENERATION” |“IMAGE_SEGMENTATION” | “FILL_MASK” | “CLASSIFICATION”
| “REGRESSION” | “OTHER”.


Specify “OTHER” if none of the tasks listed fit your use case. | | validationSpecification
Optional | object
Specifies configurations for one or more transform jobs that SageMaker runs
to test the model package. | | validationSpecification.validationProfiles
Optional | array
| | validationSpecification.validationProfiles.[]
Required | object
Contains data, such as the inputs and targeted instance types that are used in the process of validating the model package.

The data provided in the validation profile is made available to your buyers on Amazon Web Services Marketplace. || validationSpecification.validationProfiles.[].profileName
Optional | string
| | validationSpecification.validationProfiles.[].transformJobDefinition
Optional | object
Defines the input needed to run a transform job using the inference specification
specified in the algorithm. | | validationSpecification.validationProfiles.[].transformJobDefinition.batchStrategy
Optional | string
| | validationSpecification.validationProfiles.[].transformJobDefinition.environment
Optional | object
| | validationSpecification.validationProfiles.[].transformJobDefinition.maxConcurrentTransforms
Optional | integer
| | validationSpecification.validationProfiles.[].transformJobDefinition.maxPayloadInMB
Optional | integer
| | validationSpecification.validationProfiles.[].transformJobDefinition.transformInput
Optional | object
Describes the input source of a transform job and the way the transform job
consumes it. | | validationSpecification.validationProfiles.[].transformJobDefinition.transformInput.compressionType
Optional | string
| | validationSpecification.validationProfiles.[].transformJobDefinition.transformInput.contentType
Optional | string
| | validationSpecification.validationProfiles.[].transformJobDefinition.transformInput.dataSource
Optional | object
Describes the location of the channel data. | | validationSpecification.validationProfiles.[].transformJobDefinition.transformInput.dataSource.s3DataSource
Optional | object
Describes the S3 data source. | | validationSpecification.validationProfiles.[].transformJobDefinition.transformInput.dataSource.s3DataSource.s3DataType
Optional | string
| | validationSpecification.validationProfiles.[].transformJobDefinition.transformInput.dataSource.s3DataSource.s3URI
Optional | string
| | validationSpecification.validationProfiles.[].transformJobDefinition.transformInput.splitType
Optional | string
| | validationSpecification.validationProfiles.[].transformJobDefinition.transformOutput
Optional | object
Describes the results of a transform job. | | validationSpecification.validationProfiles.[].transformJobDefinition.transformOutput.accept
Optional | string
| | validationSpecification.validationProfiles.[].transformJobDefinition.transformOutput.assembleWith
Optional | string
| | validationSpecification.validationProfiles.[].transformJobDefinition.transformOutput.kmsKeyID
Optional | string
| | validationSpecification.validationProfiles.[].transformJobDefinition.transformOutput.s3OutputPath
Optional | string
| | validationSpecification.validationProfiles.[].transformJobDefinition.transformResources
Optional | object
Describes the resources, including ML instance types and ML instance count,
to use for transform job. | | validationSpecification.validationProfiles.[].transformJobDefinition.transformResources.instanceCount
Optional | integer
| | validationSpecification.validationProfiles.[].transformJobDefinition.transformResources.instanceType
Optional | string
| | validationSpecification.validationProfiles.[].transformJobDefinition.transformResources.volumeKMSKeyID
Optional | string
| | validationSpecification.validationRole
Optional | string
|

Status

ackResourceMetadata: 
  arn: string
  ownerAccountID: string
  region: string
conditions:
- lastTransitionTime: string
  message: string
  reason: string
  status: string
  type: string
creationTime: string
lastModifiedTime: string
modelPackageStatus: string
modelPackageStatusDetails: 
  imageScanStatuses:
  - failureReason: string
    name: string
    status: string
  validationStatuses:
  - failureReason: string
    name: string
    status: string
FieldDescription
ackResourceMetadata
Optional
object
All CRs managed by ACK have a common Status.ACKResourceMetadata member
that is used to contain resource sync state, account ownership,
constructed ARN for the resource
ackResourceMetadata.arn
Optional
string
ARN is the Amazon Resource Name for the resource. This is a
globally-unique identifier and is set only by the ACK service controller
once the controller has orchestrated the creation of the resource OR
when it has verified that an “adopted” resource (a resource where the
ARN annotation was set by the Kubernetes user on the CR) exists and
matches the supplied CR’s Spec field values.
TODO(vijat@): Find a better strategy for resources that do not have ARN in CreateOutputResponse
https://github.com/aws/aws-controllers-k8s/issues/270
ackResourceMetadata.ownerAccountID
Required
string
OwnerAccountID is the AWS Account ID of the account that owns the
backend AWS service API resource.
ackResourceMetadata.region
Required
string
Region is the AWS region in which the resource exists or will exist.
conditions
Optional
array
All CRS managed by ACK have a common Status.Conditions member that
contains a collection of ackv1alpha1.Condition objects that describe
the various terminal states of the CR and its backend AWS service API
resource
conditions.[]
Required
object
Condition is the common struct used by all CRDs managed by ACK service
controllers to indicate terminal states of the CR and its backend AWS
service API resource
conditions.[].message
Optional
string
A human readable message indicating details about the transition.
conditions.[].reason
Optional
string
The reason for the condition’s last transition.
conditions.[].status
Optional
string
Status of the condition, one of True, False, Unknown.
conditions.[].type
Optional
string
Type is the type of the Condition
creationTime
Optional
string
A timestamp specifying when the model package was created.
lastModifiedTime
Optional
string
The last time that the model package was modified.
modelPackageStatus
Optional
string
The current status of the model package.
modelPackageStatusDetails
Optional
object
Details about the current status of the model package.
modelPackageStatusDetails.imageScanStatuses
Optional
array
modelPackageStatusDetails.imageScanStatuses.[]
Required
object
Represents the overall status of a model package.
modelPackageStatusDetails.imageScanStatuses.[].name
Optional
string
modelPackageStatusDetails.imageScanStatuses.[].status
Optional
string
modelPackageStatusDetails.validationStatuses
Optional
array
modelPackageStatusDetails.validationStatuses.[]
Required
object
Represents the overall status of a model package.
modelPackageStatusDetails.validationStatuses.[].name
Optional
string
modelPackageStatusDetails.validationStatuses.[].status
Optional
string