Model

sagemaker.services.k8s.aws/v1alpha1

TypeLink
GoDocsagemaker-controller/apis/v1alpha1#Model

Metadata

PropertyValue
ScopeNamespaced
KindModel
ListKindModelList
Pluralmodels
Singularmodel

The properties of a model as returned by the Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html) API.

Spec

containers:
- containerHostname: string
  environment: {}
  image: string
  imageConfig: 
    repositoryAccessMode: string
    repositoryAuthConfig: 
      repositoryCredentialsProviderARN: string
  inferenceSpecificationName: string
  mode: string
  modelDataSource: 
    s3DataSource: 
      compressionType: string
      modelAccessConfig: 
        acceptEula: boolean
      s3DataType: string
      s3URI: string
  modelDataURL: string
  modelPackageName: string
  multiModelConfig: 
    modelCacheSetting: string
enableNetworkIsolation: boolean
executionRoleARN: string
inferenceExecutionConfig: 
  mode: string
modelName: string
primaryContainer: 
  containerHostname: string
  environment: {}
  image: string
  imageConfig: 
    repositoryAccessMode: string
    repositoryAuthConfig: 
      repositoryCredentialsProviderARN: string
  inferenceSpecificationName: string
  mode: string
  modelDataSource: 
    s3DataSource: 
      compressionType: string
      modelAccessConfig: 
        acceptEula: boolean
      s3DataType: string
      s3URI: string
  modelDataURL: string
  modelPackageName: string
  multiModelConfig: 
    modelCacheSetting: string
tags:
- key: string
  value: string
vpcConfig: 
  securityGroupIDs:
  - string
  subnets:
  - string
FieldDescription
containers
Optional
array
Specifies the containers in the inference pipeline.
containers.[]
Required
object
Describes the container, as part of model definition.
containers.[].environment
Optional
object
containers.[].image
Optional
string
containers.[].imageConfig
Optional
object
Specifies whether the model container is in Amazon ECR or a private Docker
registry accessible from your Amazon Virtual Private Cloud (VPC).
containers.[].imageConfig.repositoryAccessMode
Optional
string
containers.[].imageConfig.repositoryAuthConfig
Optional
object
Specifies an authentication configuration for the private docker registry
where your model image is hosted. Specify a value for this property only
if you specified Vpc as the value for the RepositoryAccessMode field of the
ImageConfig object that you passed to a call to CreateModel and the private
Docker registry where the model image is hosted requires authentication.
containers.[].imageConfig.repositoryAuthConfig.repositoryCredentialsProviderARN
Optional
string
containers.[].inferenceSpecificationName
Optional
string
containers.[].mode
Optional
string
containers.[].modelDataSource
Optional
object
Specifies the location of ML model data to deploy. If specified, you must
specify one and only one of the available data sources.
containers.[].modelDataSource.s3DataSource
Optional
object
Specifies the S3 location of ML model data to deploy.
containers.[].modelDataSource.s3DataSource.compressionType
Optional
string
containers.[].modelDataSource.s3DataSource.modelAccessConfig
Optional
object
The access configuration file to control access to the ML model. You can
explicitly accept the model end-user license agreement (EULA) within the
ModelAccessConfig.


* If you are a Jumpstart user, see the End-user license agreements (https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-foundation-models-choose.html#jumpstart-foundation-models-choose-eula)
section for more details on accepting the EULA.


* If you are an AutoML user, see the Optional Parameters section of Create
an AutoML job to fine-tune text generation models using the API for details
on How to set the EULA acceptance when fine-tuning a model using the AutoML
API (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-create-experiment-finetune-llms.html#autopilot-llms-finetuning-api-optional-params).
containers.[].modelDataSource.s3DataSource.modelAccessConfig.acceptEula
Optional
boolean
containers.[].modelDataSource.s3DataSource.s3DataType
Optional
string
containers.[].modelDataSource.s3DataSource.s3URI
Optional
string
containers.[].modelDataURL
Optional
string
containers.[].modelPackageName
Optional
string
containers.[].multiModelConfig
Optional
object
Specifies additional configuration for hosting multi-model endpoints.
containers.[].multiModelConfig.modelCacheSetting
Optional
string
enableNetworkIsolation
Optional
boolean
Isolates the model container. No inbound or outbound network calls can be
made to or from the model container.
executionRoleARN
Optional
string
The Amazon Resource Name (ARN) of the IAM role that SageMaker can assume
to access model artifacts and docker image for deployment on ML compute instances
or for batch transform jobs. Deploying on ML compute instances is part of
model hosting. For more information, see SageMaker Roles (https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html).


To be able to pass this role to SageMaker, the caller of this API must have
the iam:PassRole permission.
inferenceExecutionConfig
Optional
object
Specifies details of how containers in a multi-container endpoint are called.
inferenceExecutionConfig.mode
Optional
string
modelName
Required
string
The name of the new model.
primaryContainer
Optional
object
The location of the primary docker image containing inference code, associated
artifacts, and custom environment map that the inference code uses when the
model is deployed for predictions.
primaryContainer.containerHostname
Optional
string
primaryContainer.environment
Optional
object
primaryContainer.image
Optional
string
primaryContainer.imageConfig
Optional
object
Specifies whether the model container is in Amazon ECR or a private Docker
registry accessible from your Amazon Virtual Private Cloud (VPC).
primaryContainer.imageConfig.repositoryAccessMode
Optional
string
primaryContainer.imageConfig.repositoryAuthConfig
Optional
object
Specifies an authentication configuration for the private docker registry
where your model image is hosted. Specify a value for this property only
if you specified Vpc as the value for the RepositoryAccessMode field of the
ImageConfig object that you passed to a call to CreateModel and the private
Docker registry where the model image is hosted requires authentication.
primaryContainer.imageConfig.repositoryAuthConfig.repositoryCredentialsProviderARN
Optional
string
primaryContainer.inferenceSpecificationName
Optional
string
primaryContainer.mode
Optional
string
primaryContainer.modelDataSource
Optional
object
Specifies the location of ML model data to deploy. If specified, you must
specify one and only one of the available data sources.
primaryContainer.modelDataSource.s3DataSource
Optional
object
Specifies the S3 location of ML model data to deploy.
primaryContainer.modelDataSource.s3DataSource.compressionType
Optional
string
primaryContainer.modelDataSource.s3DataSource.modelAccessConfig
Optional
object
The access configuration file to control access to the ML model. You can
explicitly accept the model end-user license agreement (EULA) within the
ModelAccessConfig.


* If you are a Jumpstart user, see the End-user license agreements (https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-foundation-models-choose.html#jumpstart-foundation-models-choose-eula)
section for more details on accepting the EULA.


* If you are an AutoML user, see the Optional Parameters section of Create
an AutoML job to fine-tune text generation models using the API for details
on How to set the EULA acceptance when fine-tuning a model using the AutoML
API (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-create-experiment-finetune-llms.html#autopilot-llms-finetuning-api-optional-params).
primaryContainer.modelDataSource.s3DataSource.modelAccessConfig.acceptEula
Optional
boolean
primaryContainer.modelDataSource.s3DataSource.s3DataType
Optional
string
primaryContainer.modelDataSource.s3DataSource.s3URI
Optional
string
primaryContainer.modelDataURL
Optional
string
primaryContainer.modelPackageName
Optional
string
primaryContainer.multiModelConfig
Optional
object
Specifies additional configuration for hosting multi-model endpoints.
primaryContainer.multiModelConfig.modelCacheSetting
Optional
string
tags
Optional
array
An array of key-value pairs. You can use tags to categorize your Amazon Web
Services resources in different ways, for example, by purpose, owner, or
environment. For more information, see Tagging Amazon Web Services Resources
(https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html).
tags.[]
Required
object
A tag object that consists of a key and an optional value, used to manage
metadata for SageMaker Amazon Web Services resources.

You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AddTags.html).

For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html). For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy (https://d1.awsstatic.com/whitepapers/aws-tagging-best-practices.pdf). || tags.[].key
Optional | string
| | tags.[].value
Optional | string
| | vpcConfig
Optional | object
A VpcConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html)
object that specifies the VPC that you want your model to connect to. Control
access to and from your model container by configuring the VPC. VpcConfig
is used in hosting services and in batch transform. For more information,
see Protect Endpoints by Using an Amazon Virtual Private Cloud (https://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html)
and Protect Data in Batch Transform Jobs by Using an Amazon Virtual Private
Cloud (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-vpc.html). | | vpcConfig.securityGroupIDs
Optional | array
| | vpcConfig.securityGroupIDs.[]
Required | string
|| vpcConfig.subnets
Optional | array
| | vpcConfig.subnets.[]
Required | string
|

Status

ackResourceMetadata: 
  arn: string
  ownerAccountID: string
  region: string
conditions:
- lastTransitionTime: string
  message: string
  reason: string
  status: string
  type: string
FieldDescription
ackResourceMetadata
Optional
object
All CRs managed by ACK have a common Status.ACKResourceMetadata member
that is used to contain resource sync state, account ownership,
constructed ARN for the resource
ackResourceMetadata.arn
Optional
string
ARN is the Amazon Resource Name for the resource. This is a
globally-unique identifier and is set only by the ACK service controller
once the controller has orchestrated the creation of the resource OR
when it has verified that an “adopted” resource (a resource where the
ARN annotation was set by the Kubernetes user on the CR) exists and
matches the supplied CR’s Spec field values.
TODO(vijat@): Find a better strategy for resources that do not have ARN in CreateOutputResponse
https://github.com/aws/aws-controllers-k8s/issues/270
ackResourceMetadata.ownerAccountID
Required
string
OwnerAccountID is the AWS Account ID of the account that owns the
backend AWS service API resource.
ackResourceMetadata.region
Required
string
Region is the AWS region in which the resource exists or will exist.
conditions
Optional
array
All CRS managed by ACK have a common Status.Conditions member that
contains a collection of ackv1alpha1.Condition objects that describe
the various terminal states of the CR and its backend AWS service API
resource
conditions.[]
Required
object
Condition is the common struct used by all CRDs managed by ACK service
controllers to indicate terminal states of the CR and its backend AWS
service API resource
conditions.[].message
Optional
string
A human readable message indicating details about the transition.
conditions.[].reason
Optional
string
The reason for the condition’s last transition.
conditions.[].status
Optional
string
Status of the condition, one of True, False, Unknown.
conditions.[].type
Optional
string
Type is the type of the Condition