Model
sagemaker.services.k8s.aws/v1alpha1
Type | Link |
---|---|
GoDoc | sagemaker-controller/apis/v1alpha1#Model |
Metadata
Property | Value |
---|---|
Scope | Namespaced |
Kind | Model |
ListKind | ModelList |
Plural | models |
Singular | model |
The properties of a model as returned by the Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html) API.
Spec
containers:
- containerHostname: string
environment: {}
image: string
imageConfig:
repositoryAccessMode: string
repositoryAuthConfig:
repositoryCredentialsProviderARN: string
inferenceSpecificationName: string
mode: string
modelDataSource:
s3DataSource:
compressionType: string
modelAccessConfig:
acceptEula: boolean
s3DataType: string
s3URI: string
modelDataURL: string
modelPackageName: string
multiModelConfig:
modelCacheSetting: string
enableNetworkIsolation: boolean
executionRoleARN: string
inferenceExecutionConfig:
mode: string
modelName: string
primaryContainer:
containerHostname: string
environment: {}
image: string
imageConfig:
repositoryAccessMode: string
repositoryAuthConfig:
repositoryCredentialsProviderARN: string
inferenceSpecificationName: string
mode: string
modelDataSource:
s3DataSource:
compressionType: string
modelAccessConfig:
acceptEula: boolean
s3DataType: string
s3URI: string
modelDataURL: string
modelPackageName: string
multiModelConfig:
modelCacheSetting: string
tags:
- key: string
value: string
vpcConfig:
securityGroupIDs:
- string
subnets:
- string
Field | Description |
---|---|
containers Optional | array Specifies the containers in the inference pipeline. |
containers.[] Required | object Describes the container, as part of model definition. |
containers.[].environment Optional | object |
containers.[].image Optional | string |
containers.[].imageConfig Optional | object Specifies whether the model container is in Amazon ECR or a private Docker registry accessible from your Amazon Virtual Private Cloud (VPC). |
containers.[].imageConfig.repositoryAccessMode Optional | string |
containers.[].imageConfig.repositoryAuthConfig Optional | object Specifies an authentication configuration for the private docker registry where your model image is hosted. Specify a value for this property only if you specified Vpc as the value for the RepositoryAccessMode field of the ImageConfig object that you passed to a call to CreateModel and the private Docker registry where the model image is hosted requires authentication. |
containers.[].imageConfig.repositoryAuthConfig.repositoryCredentialsProviderARN Optional | string |
containers.[].inferenceSpecificationName Optional | string |
containers.[].mode Optional | string |
containers.[].modelDataSource Optional | object Specifies the location of ML model data to deploy. If specified, you must specify one and only one of the available data sources. |
containers.[].modelDataSource.s3DataSource Optional | object Specifies the S3 location of ML model data to deploy. |
containers.[].modelDataSource.s3DataSource.compressionType Optional | string |
containers.[].modelDataSource.s3DataSource.modelAccessConfig Optional | object The access configuration file to control access to the ML model. You can explicitly accept the model end-user license agreement (EULA) within the ModelAccessConfig. * If you are a Jumpstart user, see the End-user license agreements (https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-foundation-models-choose.html#jumpstart-foundation-models-choose-eula) section for more details on accepting the EULA. * If you are an AutoML user, see the Optional Parameters section of Create an AutoML job to fine-tune text generation models using the API for details on How to set the EULA acceptance when fine-tuning a model using the AutoML API (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-create-experiment-finetune-llms.html#autopilot-llms-finetuning-api-optional-params). |
containers.[].modelDataSource.s3DataSource.modelAccessConfig.acceptEula Optional | boolean |
containers.[].modelDataSource.s3DataSource.s3DataType Optional | string |
containers.[].modelDataSource.s3DataSource.s3URI Optional | string |
containers.[].modelDataURL Optional | string |
containers.[].modelPackageName Optional | string |
containers.[].multiModelConfig Optional | object Specifies additional configuration for hosting multi-model endpoints. |
containers.[].multiModelConfig.modelCacheSetting Optional | string |
enableNetworkIsolation Optional | boolean Isolates the model container. No inbound or outbound network calls can be made to or from the model container. |
executionRoleARN Optional | string The Amazon Resource Name (ARN) of the IAM role that SageMaker can assume to access model artifacts and docker image for deployment on ML compute instances or for batch transform jobs. Deploying on ML compute instances is part of model hosting. For more information, see SageMaker Roles (https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html). To be able to pass this role to SageMaker, the caller of this API must have the iam:PassRole permission. |
inferenceExecutionConfig Optional | object Specifies details of how containers in a multi-container endpoint are called. |
inferenceExecutionConfig.mode Optional | string |
modelName Required | string The name of the new model. |
primaryContainer Optional | object The location of the primary docker image containing inference code, associated artifacts, and custom environment map that the inference code uses when the model is deployed for predictions. |
primaryContainer.containerHostname Optional | string |
primaryContainer.environment Optional | object |
primaryContainer.image Optional | string |
primaryContainer.imageConfig Optional | object Specifies whether the model container is in Amazon ECR or a private Docker registry accessible from your Amazon Virtual Private Cloud (VPC). |
primaryContainer.imageConfig.repositoryAccessMode Optional | string |
primaryContainer.imageConfig.repositoryAuthConfig Optional | object Specifies an authentication configuration for the private docker registry where your model image is hosted. Specify a value for this property only if you specified Vpc as the value for the RepositoryAccessMode field of the ImageConfig object that you passed to a call to CreateModel and the private Docker registry where the model image is hosted requires authentication. |
primaryContainer.imageConfig.repositoryAuthConfig.repositoryCredentialsProviderARN Optional | string |
primaryContainer.inferenceSpecificationName Optional | string |
primaryContainer.mode Optional | string |
primaryContainer.modelDataSource Optional | object Specifies the location of ML model data to deploy. If specified, you must specify one and only one of the available data sources. |
primaryContainer.modelDataSource.s3DataSource Optional | object Specifies the S3 location of ML model data to deploy. |
primaryContainer.modelDataSource.s3DataSource.compressionType Optional | string |
primaryContainer.modelDataSource.s3DataSource.modelAccessConfig Optional | object The access configuration file to control access to the ML model. You can explicitly accept the model end-user license agreement (EULA) within the ModelAccessConfig. * If you are a Jumpstart user, see the End-user license agreements (https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-foundation-models-choose.html#jumpstart-foundation-models-choose-eula) section for more details on accepting the EULA. * If you are an AutoML user, see the Optional Parameters section of Create an AutoML job to fine-tune text generation models using the API for details on How to set the EULA acceptance when fine-tuning a model using the AutoML API (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-create-experiment-finetune-llms.html#autopilot-llms-finetuning-api-optional-params). |
primaryContainer.modelDataSource.s3DataSource.modelAccessConfig.acceptEula Optional | boolean |
primaryContainer.modelDataSource.s3DataSource.s3DataType Optional | string |
primaryContainer.modelDataSource.s3DataSource.s3URI Optional | string |
primaryContainer.modelDataURL Optional | string |
primaryContainer.modelPackageName Optional | string |
primaryContainer.multiModelConfig Optional | object Specifies additional configuration for hosting multi-model endpoints. |
primaryContainer.multiModelConfig.modelCacheSetting Optional | string |
tags Optional | array An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html). |
tags.[] Required | object A tag object that consists of a key and an optional value, used to manage |
metadata for SageMaker Amazon Web Services resources. |
You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AddTags.html).
For more information on adding metadata to your Amazon Web Services resources
with tagging, see Tagging Amazon Web Services resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html).
For advice on best practices for managing Amazon Web Services resources with
tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services
Resource Tagging Strategy (https://d1.awsstatic.com/whitepapers/aws-tagging-best-practices.pdf). || tags.[].key
Optional | string
|
| tags.[].value
Optional | string
|
| vpcConfig
Optional | object
A VpcConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html)
object that specifies the VPC that you want your model to connect to. Control
access to and from your model container by configuring the VPC. VpcConfig
is used in hosting services and in batch transform. For more information,
see Protect Endpoints by Using an Amazon Virtual Private Cloud (https://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html)
and Protect Data in Batch Transform Jobs by Using an Amazon Virtual Private
Cloud (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-vpc.html). |
| vpcConfig.securityGroupIDs
Optional | array
|
| vpcConfig.securityGroupIDs.[]
Required | string
|| vpcConfig.subnets
Optional | array
|
| vpcConfig.subnets.[]
Required | string
|
Status
ackResourceMetadata:
arn: string
ownerAccountID: string
region: string
conditions:
- lastTransitionTime: string
message: string
reason: string
status: string
type: string
Field | Description |
---|---|
ackResourceMetadata Optional | object All CRs managed by ACK have a common Status.ACKResourceMetadata memberthat is used to contain resource sync state, account ownership, constructed ARN for the resource |
ackResourceMetadata.arn Optional | string ARN is the Amazon Resource Name for the resource. This is a globally-unique identifier and is set only by the ACK service controller once the controller has orchestrated the creation of the resource OR when it has verified that an “adopted” resource (a resource where the ARN annotation was set by the Kubernetes user on the CR) exists and matches the supplied CR’s Spec field values. TODO(vijat@): Find a better strategy for resources that do not have ARN in CreateOutputResponse https://github.com/aws/aws-controllers-k8s/issues/270 |
ackResourceMetadata.ownerAccountID Required | string OwnerAccountID is the AWS Account ID of the account that owns the backend AWS service API resource. |
ackResourceMetadata.region Required | string Region is the AWS region in which the resource exists or will exist. |
conditions Optional | array All CRS managed by ACK have a common Status.Conditions member thatcontains a collection of ackv1alpha1.Condition objects that describethe various terminal states of the CR and its backend AWS service API resource |
conditions.[] Required | object Condition is the common struct used by all CRDs managed by ACK service |
controllers to indicate terminal states of the CR and its backend AWS | |
service API resource | |
conditions.[].message Optional | string A human readable message indicating details about the transition. |
conditions.[].reason Optional | string The reason for the condition’s last transition. |
conditions.[].status Optional | string Status of the condition, one of True, False, Unknown. |
conditions.[].type Optional | string Type is the type of the Condition |