HyperParameterTuningJob
sagemaker.services.k8s.aws/v1alpha1
Type | Link |
---|---|
GoDoc | sagemaker-controller/apis/v1alpha1#HyperParameterTuningJob |
Metadata
Property | Value |
---|---|
Scope | Namespaced |
Kind | HyperParameterTuningJob |
ListKind | HyperParameterTuningJobList |
Plural | hyperparametertuningjobs |
Singular | hyperparametertuningjob |
Spec
autotune:
mode: string
hyperParameterTuningJobConfig:
hyperParameterTuningJobObjective:
metricName: string
type_: string
parameterRanges:
autoParameters:
- name: string
valueHint: string
categoricalParameterRanges:
- name: string
values:
- string
continuousParameterRanges:
- maxValue: string
minValue: string
name: string
scalingType: string
integerParameterRanges:
- maxValue: string
minValue: string
name: string
scalingType: string
resourceLimits:
maxNumberOfTrainingJobs: integer
maxParallelTrainingJobs: integer
strategy: string
trainingJobEarlyStoppingType: string
tuningJobCompletionCriteria:
targetObjectiveMetricValue: number
hyperParameterTuningJobName: string
tags:
- key: string
value: string
trainingJobDefinition:
algorithmSpecification:
algorithmName: string
metricDefinitions:
- name: string
regex: string
trainingImage: string
trainingInputMode: string
checkpointConfig:
localPath: string
s3URI: string
definitionName: string
enableInterContainerTrafficEncryption: boolean
enableManagedSpotTraining: boolean
enableNetworkIsolation: boolean
hyperParameterRanges:
autoParameters:
- name: string
valueHint: string
categoricalParameterRanges:
- name: string
values:
- string
continuousParameterRanges:
- maxValue: string
minValue: string
name: string
scalingType: string
integerParameterRanges:
- maxValue: string
minValue: string
name: string
scalingType: string
inputDataConfig:
- channelName: string
compressionType: string
contentType: string
dataSource:
fileSystemDataSource:
directoryPath: string
fileSystemAccessMode: string
fileSystemID: string
fileSystemType: string
s3DataSource:
attributeNames:
- string
instanceGroupNames:
- string
s3DataDistributionType: string
s3DataType: string
s3URI: string
inputMode: string
recordWrapperType: string
shuffleConfig:
seed: integer
outputDataConfig:
compressionType: string
kmsKeyID: string
s3OutputPath: string
resourceConfig:
instanceCount: integer
instanceGroups:
- instanceCount: integer
instanceGroupName: string
instanceType: string
instanceType: string
keepAlivePeriodInSeconds: integer
volumeKMSKeyID: string
volumeSizeInGB: integer
retryStrategy:
maximumRetryAttempts: integer
roleARN: string
staticHyperParameters: {}
stoppingCondition:
maxPendingTimeInSeconds: integer
maxRuntimeInSeconds: integer
maxWaitTimeInSeconds: integer
tuningObjective:
metricName: string
type_: string
vpcConfig:
securityGroupIDs:
- string
subnets:
- string
trainingJobDefinitions:
algorithmSpecification:
algorithmName: string
metricDefinitions:
- name: string
regex: string
trainingImage: string
trainingInputMode: string
checkpointConfig:
localPath: string
s3URI: string
definitionName: string
enableInterContainerTrafficEncryption: boolean
enableManagedSpotTraining: boolean
enableNetworkIsolation: boolean
hyperParameterRanges:
autoParameters:
- name: string
valueHint: string
categoricalParameterRanges:
- name: string
values:
- string
continuousParameterRanges:
- maxValue: string
minValue: string
name: string
scalingType: string
integerParameterRanges:
- maxValue: string
minValue: string
name: string
scalingType: string
inputDataConfig:
- channelName: string
compressionType: string
contentType: string
dataSource:
fileSystemDataSource:
directoryPath: string
fileSystemAccessMode: string
fileSystemID: string
fileSystemType: string
s3DataSource:
attributeNames:
- string
instanceGroupNames:
- string
s3DataDistributionType: string
s3DataType: string
s3URI: string
inputMode: string
recordWrapperType: string
shuffleConfig:
seed: integer
outputDataConfig:
compressionType: string
kmsKeyID: string
s3OutputPath: string
resourceConfig:
instanceCount: integer
instanceGroups:
- instanceCount: integer
instanceGroupName: string
instanceType: string
instanceType: string
keepAlivePeriodInSeconds: integer
volumeKMSKeyID: string
volumeSizeInGB: integer
retryStrategy:
maximumRetryAttempts: integer
roleARN: string
staticHyperParameters: {}
stoppingCondition:
maxPendingTimeInSeconds: integer
maxRuntimeInSeconds: integer
maxWaitTimeInSeconds: integer
tuningObjective:
metricName: string
type_: string
vpcConfig:
securityGroupIDs:
- string
subnets:
- string
warmStartConfig:
parentHyperParameterTuningJobs:
- hyperParameterTuningJobName: string
warmStartType: string
Field | Description |
---|---|
autotune Optional | object Configures SageMaker Automatic model tuning (AMT) to automatically find optimal parameters for the following fields: * ParameterRanges (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html#sagemaker-Type-HyperParameterTuningJobConfig-ParameterRanges): The names and ranges of parameters that a hyperparameter tuning job can optimize. * ResourceLimits (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResourceLimits.html): The maximum resources that can be used for a training job. These resources include the maximum number of training jobs, the maximum runtime of a tuning job, and the maximum number of training jobs to run at the same time. * TrainingJobEarlyStoppingType (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html#sagemaker-Type-HyperParameterTuningJobConfig-TrainingJobEarlyStoppingType): A flag that specifies whether or not to use early stopping for training jobs launched by a hyperparameter tuning job. * RetryStrategy (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-RetryStrategy): The number of times to retry a training job. * Strategy (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html): Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training jobs that it launches. * ConvergenceDetected (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ConvergenceDetected.html): A flag to indicate that Automatic model tuning (AMT) has detected model convergence. |
autotune.mode Optional | string |
hyperParameterTuningJobConfig Required | object The HyperParameterTuningJobConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html) object that describes the tuning job, including the search strategy, the objective metric used to evaluate training jobs, ranges of parameters to search, and resource limits for the tuning job. For more information, see How Hyperparameter Tuning Works (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html). |
hyperParameterTuningJobConfig.hyperParameterTuningJobObjective Optional | object Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the Type parameter. If you want to define a custom objective metric, see Define metrics and environment variables (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html). |
hyperParameterTuningJobConfig.hyperParameterTuningJobObjective.metricName Optional | string |
**hyperParameterTuningJobConfig.hyperParameterTuningJobObjective.type_** Optional | string |
hyperParameterTuningJobConfig.parameterRanges Optional | object Specifies ranges of integer, continuous, and categorical hyperparameters that a hyperparameter tuning job searches. The hyperparameter tuning job launches training jobs with hyperparameter values within these ranges to find the combination of values that result in the training job with the best performance as measured by the objective metric of the hyperparameter tuning job. The maximum number of items specified for Array Members refers to the maximum number of hyperparameters for each range and also the maximum for the hyperparameter tuning job itself. That is, the sum of the number of hyperparameters for all the ranges can’t exceed the maximum number specified. |
hyperParameterTuningJobConfig.parameterRanges.autoParameters Optional | array |
hyperParameterTuningJobConfig.parameterRanges.autoParameters.[] Required | object The name and an example value of the hyperparameter that you want to use |
in Autotune. If Automatic model tuning (AMT) determines that your hyperparameter | |
is eligible for Autotune, an optimal hyperparameter range is selected for | |
you. | |
hyperParameterTuningJobConfig.parameterRanges.autoParameters.[].valueHint Optional | string |
hyperParameterTuningJobConfig.parameterRanges.categoricalParameterRanges Optional | array |
hyperParameterTuningJobConfig.parameterRanges.categoricalParameterRanges.[] Required | object A list of categorical hyperparameters to tune. |
hyperParameterTuningJobConfig.parameterRanges.categoricalParameterRanges.[].values Optional | array |
hyperParameterTuningJobConfig.parameterRanges.categoricalParameterRanges.[].values.[] Required | string |
hyperParameterTuningJobConfig.parameterRanges.continuousParameterRanges.[] Required | object A list of continuous hyperparameters to tune. |
hyperParameterTuningJobConfig.parameterRanges.continuousParameterRanges.[].minValue Optional | string |
hyperParameterTuningJobConfig.parameterRanges.continuousParameterRanges.[].name Optional | string |
hyperParameterTuningJobConfig.parameterRanges.continuousParameterRanges.[].scalingType Optional | string |
hyperParameterTuningJobConfig.parameterRanges.integerParameterRanges Optional | array |
hyperParameterTuningJobConfig.parameterRanges.integerParameterRanges.[] Required | object For a hyperparameter of the integer type, specifies the range that a hyperparameter |
tuning job searches. | |
hyperParameterTuningJobConfig.parameterRanges.integerParameterRanges.[].minValue Optional | string |
hyperParameterTuningJobConfig.parameterRanges.integerParameterRanges.[].name Optional | string |
hyperParameterTuningJobConfig.parameterRanges.integerParameterRanges.[].scalingType Optional | string |
hyperParameterTuningJobConfig.resourceLimits Optional | object Specifies the maximum number of training jobs and parallel training jobs that a hyperparameter tuning job can launch. |
hyperParameterTuningJobConfig.resourceLimits.maxNumberOfTrainingJobs Optional | integer |
hyperParameterTuningJobConfig.resourceLimits.maxParallelTrainingJobs Optional | integer |
hyperParameterTuningJobConfig.strategy Optional | string The strategy hyperparameter tuning uses to find the best combination of hyperparameters for your model. |
hyperParameterTuningJobConfig.trainingJobEarlyStoppingType Optional | string |
hyperParameterTuningJobConfig.tuningJobCompletionCriteria Optional | object The job completion criteria. |
hyperParameterTuningJobConfig.tuningJobCompletionCriteria.targetObjectiveMetricValue Optional | number |
hyperParameterTuningJobName Required | string The name of the tuning job. This name is the prefix for the names of all training jobs that this tuning job launches. The name must be unique within the same Amazon Web Services account and Amazon Web Services Region. The name must have 1 to 32 characters. Valid characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case sensitive. |
tags Optional | array An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html). Tags that you specify for the tuning job are also added to all training jobs that the tuning job launches. |
tags.[] Required | object A tag object that consists of a key and an optional value, used to manage |
metadata for SageMaker Amazon Web Services resources. |
You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AddTags.html).
For more information on adding metadata to your Amazon Web Services resources
with tagging, see Tagging Amazon Web Services resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html).
For advice on best practices for managing Amazon Web Services resources with
tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services
Resource Tagging Strategy (https://d1.awsstatic.com/whitepapers/aws-tagging-best-practices.pdf). || tags.[].key
Optional | string
|
| tags.[].value
Optional | string
|
| trainingJobDefinition
Optional | object
The HyperParameterTrainingJobDefinition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html)
object that describes the training jobs that this tuning job launches, including
static hyperparameters, input data configuration, output data configuration,
resource configuration, and stopping condition. |
| trainingJobDefinition.algorithmSpecification
Optional | object
Specifies which training algorithm to use for training jobs that a hyperparameter
tuning job launches and the metrics to monitor. |
| trainingJobDefinition.algorithmSpecification.algorithmName
Optional | string
|
| trainingJobDefinition.algorithmSpecification.metricDefinitions
Optional | array
|
| trainingJobDefinition.algorithmSpecification.metricDefinitions.[]
Required | object
Specifies a metric that the training algorithm writes to stderr or stdout.
You can view these logs to understand how your training job performs and
check for any errors encountered during training. SageMaker hyperparameter
tuning captures all defined metrics. Specify one of the defined metrics to
use as an objective metric using the TuningObjective (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-TuningObjective)
parameter in the HyperParameterTrainingJobDefinition API to evaluate job
performance during hyperparameter tuning. || trainingJobDefinition.algorithmSpecification.metricDefinitions.[].name
Optional | string
|
| trainingJobDefinition.algorithmSpecification.metricDefinitions.[].regex
Optional | string
|
| trainingJobDefinition.algorithmSpecification.trainingImage
Optional | string
|
| trainingJobDefinition.algorithmSpecification.trainingInputMode
Optional | string
The training input mode that the algorithm supports. For more information
about input modes, see Algorithms (https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html).
Pipe mode
If an algorithm supports Pipe mode, Amazon SageMaker streams data directly
from Amazon S3 to the container.
File mode
If an algorithm supports File mode, SageMaker downloads the training data
from S3 to the provisioned ML storage volume, and mounts the directory to
the Docker volume for the training container.
You must provision the ML storage volume with sufficient capacity to accommodate
the data downloaded from S3. In addition to the training data, the ML storage
volume also stores the output model. The algorithm container uses the ML
storage volume to also store intermediate information, if any.
For distributed algorithms, training data is distributed uniformly. Your
training duration is predictable if the input data objects sizes are approximately
the same. SageMaker does not split the files any further for model training.
If the object sizes are skewed, training won’t be optimal as the data distribution
is also skewed when one host in a training cluster is overloaded, thus becoming
a bottleneck in training.
FastFile mode
If an algorithm supports FastFile mode, SageMaker streams data directly from
S3 to the container with no code changes, and provides file system access
to the data. Users can author their training script to interact with these
files as if they were stored on disk.
FastFile mode works best when the data is read sequentially. Augmented manifest
files aren’t supported. The startup time is lower when there are fewer files
in the S3 bucket provided. |
| trainingJobDefinition.checkpointConfig
Optional | object
Contains information about the output location for managed spot training
checkpoint data. |
| trainingJobDefinition.checkpointConfig.localPath
Optional | string
|
| trainingJobDefinition.checkpointConfig.s3URI
Optional | string
|
| trainingJobDefinition.definitionName
Optional | string
|
| trainingJobDefinition.enableInterContainerTrafficEncryption
Optional | boolean
|
| trainingJobDefinition.enableManagedSpotTraining
Optional | boolean
|
| trainingJobDefinition.enableNetworkIsolation
Optional | boolean
|
| trainingJobDefinition.hyperParameterRanges
Optional | object
Specifies ranges of integer, continuous, and categorical hyperparameters
that a hyperparameter tuning job searches. The hyperparameter tuning job
launches training jobs with hyperparameter values within these ranges to
find the combination of values that result in the training job with the best
performance as measured by the objective metric of the hyperparameter tuning
job.
The maximum number of items specified for Array Members refers to the maximum
number of hyperparameters for each range and also the maximum for the hyperparameter
tuning job itself. That is, the sum of the number of hyperparameters for
all the ranges can’t exceed the maximum number specified. |
| trainingJobDefinition.hyperParameterRanges.autoParameters
Optional | array
|
| trainingJobDefinition.hyperParameterRanges.autoParameters.[]
Required | object
The name and an example value of the hyperparameter that you want to use
in Autotune. If Automatic model tuning (AMT) determines that your hyperparameter
is eligible for Autotune, an optimal hyperparameter range is selected for
you. || trainingJobDefinition.hyperParameterRanges.autoParameters.[].name
Optional | string
|
| trainingJobDefinition.hyperParameterRanges.autoParameters.[].valueHint
Optional | string
|
| trainingJobDefinition.hyperParameterRanges.categoricalParameterRanges
Optional | array
|
| trainingJobDefinition.hyperParameterRanges.categoricalParameterRanges.[]
Required | object
A list of categorical hyperparameters to tune. || trainingJobDefinition.hyperParameterRanges.categoricalParameterRanges.[].name
Optional | string
|
| trainingJobDefinition.hyperParameterRanges.categoricalParameterRanges.[].values
Optional | array
|
| trainingJobDefinition.hyperParameterRanges.categoricalParameterRanges.[].values.[]
Required | string
|| trainingJobDefinition.hyperParameterRanges.continuousParameterRanges
Optional | array
|
| trainingJobDefinition.hyperParameterRanges.continuousParameterRanges.[]
Required | object
A list of continuous hyperparameters to tune. || trainingJobDefinition.hyperParameterRanges.continuousParameterRanges.[].maxValue
Optional | string
|
| trainingJobDefinition.hyperParameterRanges.continuousParameterRanges.[].minValue
Optional | string
|
| trainingJobDefinition.hyperParameterRanges.continuousParameterRanges.[].name
Optional | string
|
| trainingJobDefinition.hyperParameterRanges.continuousParameterRanges.[].scalingType
Optional | string
|
| trainingJobDefinition.hyperParameterRanges.integerParameterRanges
Optional | array
|
| trainingJobDefinition.hyperParameterRanges.integerParameterRanges.[]
Required | object
For a hyperparameter of the integer type, specifies the range that a hyperparameter
tuning job searches. || trainingJobDefinition.hyperParameterRanges.integerParameterRanges.[].maxValue
Optional | string
|
| trainingJobDefinition.hyperParameterRanges.integerParameterRanges.[].minValue
Optional | string
|
| trainingJobDefinition.hyperParameterRanges.integerParameterRanges.[].name
Optional | string
|
| trainingJobDefinition.hyperParameterRanges.integerParameterRanges.[].scalingType
Optional | string
|
| trainingJobDefinition.inputDataConfig
Optional | array
|
| trainingJobDefinition.inputDataConfig.[]
Required | object
A channel is a named input source that training algorithms can consume. || trainingJobDefinition.inputDataConfig.[].channelName
Optional | string
|
| trainingJobDefinition.inputDataConfig.[].compressionType
Optional | string
|
| trainingJobDefinition.inputDataConfig.[].contentType
Optional | string
|
| trainingJobDefinition.inputDataConfig.[].dataSource
Optional | object
Describes the location of the channel data. |
| trainingJobDefinition.inputDataConfig.[].dataSource.fileSystemDataSource
Optional | object
Specifies a file system data source for a channel. |
| trainingJobDefinition.inputDataConfig.[].dataSource.fileSystemDataSource.directoryPath
Optional | string
|
| trainingJobDefinition.inputDataConfig.[].dataSource.fileSystemDataSource.fileSystemAccessMode
Optional | string
|
| trainingJobDefinition.inputDataConfig.[].dataSource.fileSystemDataSource.fileSystemID
Optional | string
|
| trainingJobDefinition.inputDataConfig.[].dataSource.fileSystemDataSource.fileSystemType
Optional | string
|
| trainingJobDefinition.inputDataConfig.[].dataSource.s3DataSource
Optional | object
Describes the S3 data source.
Your input bucket must be in the same Amazon Web Services region as your
training job. |
| trainingJobDefinition.inputDataConfig.[].dataSource.s3DataSource.attributeNames
Optional | array
|
| trainingJobDefinition.inputDataConfig.[].dataSource.s3DataSource.attributeNames.[]
Required | string
|| trainingJobDefinition.inputDataConfig.[].dataSource.s3DataSource.instanceGroupNames
Optional | array
|
| trainingJobDefinition.inputDataConfig.[].dataSource.s3DataSource.instanceGroupNames.[]
Required | string
|| trainingJobDefinition.inputDataConfig.[].dataSource.s3DataSource.s3DataDistributionType
Optional | string
|
| trainingJobDefinition.inputDataConfig.[].dataSource.s3DataSource.s3DataType
Optional | string
|
| trainingJobDefinition.inputDataConfig.[].dataSource.s3DataSource.s3URI
Optional | string
|
| trainingJobDefinition.inputDataConfig.[].inputMode
Optional | string
The training input mode that the algorithm supports. For more information
about input modes, see Algorithms (https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html).
Pipe mode
If an algorithm supports Pipe mode, Amazon SageMaker streams data directly
from Amazon S3 to the container.
File mode
If an algorithm supports File mode, SageMaker downloads the training data
from S3 to the provisioned ML storage volume, and mounts the directory to
the Docker volume for the training container.
You must provision the ML storage volume with sufficient capacity to accommodate
the data downloaded from S3. In addition to the training data, the ML storage
volume also stores the output model. The algorithm container uses the ML
storage volume to also store intermediate information, if any.
For distributed algorithms, training data is distributed uniformly. Your
training duration is predictable if the input data objects sizes are approximately
the same. SageMaker does not split the files any further for model training.
If the object sizes are skewed, training won’t be optimal as the data distribution
is also skewed when one host in a training cluster is overloaded, thus becoming
a bottleneck in training.
FastFile mode
If an algorithm supports FastFile mode, SageMaker streams data directly from
S3 to the container with no code changes, and provides file system access
to the data. Users can author their training script to interact with these
files as if they were stored on disk.
FastFile mode works best when the data is read sequentially. Augmented manifest
files aren’t supported. The startup time is lower when there are fewer files
in the S3 bucket provided. |
| trainingJobDefinition.inputDataConfig.[].recordWrapperType
Optional | string
|
| trainingJobDefinition.inputDataConfig.[].shuffleConfig
Optional | object
A configuration for a shuffle option for input data in a channel. If you
use S3Prefix for S3DataType, the results of the S3 key prefix matches are
shuffled. If you use ManifestFile, the order of the S3 object references
in the ManifestFile is shuffled. If you use AugmentedManifestFile, the order
of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling
order is determined using the Seed value.
For Pipe input mode, when ShuffleConfig is specified shuffling is done at
the start of every epoch. With large datasets, this ensures that the order
of the training data is different for each epoch, and it helps reduce bias
and possible overfitting. In a multi-node training job when ShuffleConfig
is combined with S3DataDistributionType of ShardedByS3Key, the data is shuffled
across nodes so that the content sent to a particular node on the first epoch
might be sent to a different node on the second epoch. |
| trainingJobDefinition.inputDataConfig.[].shuffleConfig.seed
Optional | integer
|
| trainingJobDefinition.outputDataConfig
Optional | object
Provides information about how to store model training results (model artifacts). |
| trainingJobDefinition.outputDataConfig.compressionType
Optional | string
|
| trainingJobDefinition.outputDataConfig.kmsKeyID
Optional | string
|
| trainingJobDefinition.outputDataConfig.s3OutputPath
Optional | string
|
| trainingJobDefinition.resourceConfig
Optional | object
Describes the resources, including machine learning (ML) compute instances
and ML storage volumes, to use for model training. |
| trainingJobDefinition.resourceConfig.instanceCount
Optional | integer
|
| trainingJobDefinition.resourceConfig.instanceGroups
Optional | array
|
| trainingJobDefinition.resourceConfig.instanceGroups.[]
Required | object
Defines an instance group for heterogeneous cluster training. When requesting
a training job using the CreateTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html)
API, you can configure multiple instance groups . || trainingJobDefinition.resourceConfig.instanceGroups.[].instanceCount
Optional | integer
|
| trainingJobDefinition.resourceConfig.instanceGroups.[].instanceGroupName
Optional | string
|
| trainingJobDefinition.resourceConfig.instanceGroups.[].instanceType
Optional | string
|
| trainingJobDefinition.resourceConfig.instanceType
Optional | string
|
| trainingJobDefinition.resourceConfig.keepAlivePeriodInSeconds
Optional | integer
Optional. Customer requested period in seconds for which the Training cluster
is kept alive after the job is finished. |
| trainingJobDefinition.resourceConfig.volumeKMSKeyID
Optional | string
|
| trainingJobDefinition.resourceConfig.volumeSizeInGB
Optional | integer
|
| trainingJobDefinition.retryStrategy
Optional | object
The retry strategy to use when a training job fails due to an InternalServerError.
RetryStrategy is specified as part of the CreateTrainingJob and CreateHyperParameterTuningJob
requests. You can add the StoppingCondition parameter to the request to limit
the training time for the complete job. |
| trainingJobDefinition.retryStrategy.maximumRetryAttempts
Optional | integer
|
| trainingJobDefinition.roleARN
Optional | string
|
| trainingJobDefinition.staticHyperParameters
Optional | object
|
| trainingJobDefinition.stoppingCondition
Optional | object
Specifies a limit to how long a model training job or model compilation job
can run. It also specifies how long a managed spot training job has to complete.
When the job reaches the time limit, SageMaker ends the training or compilation
job. Use this API to cap model training costs.
To stop a training job, SageMaker sends the algorithm the SIGTERM signal,
which delays job termination for 120 seconds. Algorithms can use this 120-second
window to save the model artifacts, so the results of training are not lost.
The training algorithms provided by SageMaker automatically save the intermediate
results of a model training job when possible. This attempt to save artifacts
is only a best effort case as model might not be in a state from which it
can be saved. For example, if training has just started, the model might
not be ready to save. When saved, this intermediate data is a valid model
artifact. You can use it to create a model with CreateModel.
The Neural Topic Model (NTM) currently does not support saving intermediate
model artifacts. When training NTMs, make sure that the maximum runtime is
sufficient for the training job to complete. |
| trainingJobDefinition.stoppingCondition.maxPendingTimeInSeconds
Optional | integer
Maximum job scheduler pending time in seconds. |
| trainingJobDefinition.stoppingCondition.maxRuntimeInSeconds
Optional | integer
|
| trainingJobDefinition.stoppingCondition.maxWaitTimeInSeconds
Optional | integer
|
| trainingJobDefinition.tuningObjective
Optional | object
Defines the objective metric for a hyperparameter tuning job. Hyperparameter
tuning uses the value of this metric to evaluate the training jobs it launches,
and returns the training job that results in either the highest or lowest
value for this metric, depending on the value you specify for the Type parameter.
If you want to define a custom objective metric, see Define metrics and environment
variables (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html). |
| trainingJobDefinition.tuningObjective.metricName
Optional | string
|
| **trainingJobDefinition.tuningObjective.type_**
Optional | **string**
|
| **trainingJobDefinition.vpcConfig**
Optional | **object**
Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs,
hosted models, and compute resources have access to. You can control access
to and from your resources by configuring a VPC. For more information, see
Give SageMaker Access to Resources in your Amazon VPC (https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html). |
| **trainingJobDefinition.vpcConfig.securityGroupIDs**
Optional | **array**
|
| **trainingJobDefinition.vpcConfig.securityGroupIDs.[]**
Required | **string**
|| **trainingJobDefinition.vpcConfig.subnets**
Optional | **array**
|
| **trainingJobDefinition.vpcConfig.subnets.[]**
Required | **string**
|| **trainingJobDefinitions**
Optional | **array**
A list of the HyperParameterTrainingJobDefinition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html)
objects launched for this tuning job. |
| **trainingJobDefinitions.[]**
Required | **object**
Defines the training jobs launched by a hyperparameter tuning job. || **trainingJobDefinitions.[].algorithmSpecification**
Optional | **object**
Specifies which training algorithm to use for training jobs that a hyperparameter
tuning job launches and the metrics to monitor. |
| **trainingJobDefinitions.[].algorithmSpecification.algorithmName**
Optional | **string**
|
| **trainingJobDefinitions.[].algorithmSpecification.metricDefinitions**
Optional | **array**
|
| **trainingJobDefinitions.[].algorithmSpecification.metricDefinitions.[]**
Required | **object**
Specifies a metric that the training algorithm writes to stderr or stdout.
You can view these logs to understand how your training job performs and
check for any errors encountered during training. SageMaker hyperparameter
tuning captures all defined metrics. Specify one of the defined metrics to
use as an objective metric using the TuningObjective (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-TuningObjective)
parameter in the HyperParameterTrainingJobDefinition API to evaluate job
performance during hyperparameter tuning. || **trainingJobDefinitions.[].algorithmSpecification.metricDefinitions.[].name**
Optional | **string**
|
| **trainingJobDefinitions.[].algorithmSpecification.metricDefinitions.[].regex**
Optional | **string**
|
| **trainingJobDefinitions.[].algorithmSpecification.trainingImage**
Optional | **string**
|
| **trainingJobDefinitions.[].algorithmSpecification.trainingInputMode**
Optional | **string**
The training input mode that the algorithm supports. For more information
about input modes, see Algorithms (https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html).
Pipe mode
If an algorithm supports Pipe mode, Amazon SageMaker streams data directly
from Amazon S3 to the container.
File mode
If an algorithm supports File mode, SageMaker downloads the training data
from S3 to the provisioned ML storage volume, and mounts the directory to
the Docker volume for the training container.
You must provision the ML storage volume with sufficient capacity to accommodate
the data downloaded from S3. In addition to the training data, the ML storage
volume also stores the output model. The algorithm container uses the ML
storage volume to also store intermediate information, if any.
For distributed algorithms, training data is distributed uniformly. Your
training duration is predictable if the input data objects sizes are approximately
the same. SageMaker does not split the files any further for model training.
If the object sizes are skewed, training won’t be optimal as the data distribution
is also skewed when one host in a training cluster is overloaded, thus becoming
a bottleneck in training.
FastFile mode
If an algorithm supports FastFile mode, SageMaker streams data directly from
S3 to the container with no code changes, and provides file system access
to the data. Users can author their training script to interact with these
files as if they were stored on disk.
FastFile mode works best when the data is read sequentially. Augmented manifest
files aren’t supported. The startup time is lower when there are fewer files
in the S3 bucket provided. |
| **trainingJobDefinitions.[].checkpointConfig**
Optional | **object**
Contains information about the output location for managed spot training
checkpoint data. |
| **trainingJobDefinitions.[].checkpointConfig.localPath**
Optional | **string**
|
| **trainingJobDefinitions.[].checkpointConfig.s3URI**
Optional | **string**
|
| **trainingJobDefinitions.[].definitionName**
Optional | **string**
|
| **trainingJobDefinitions.[].enableInterContainerTrafficEncryption**
Optional | **boolean**
|
| **trainingJobDefinitions.[].enableManagedSpotTraining**
Optional | **boolean**
|
| **trainingJobDefinitions.[].enableNetworkIsolation**
Optional | **boolean**
|
| **trainingJobDefinitions.[].hyperParameterRanges**
Optional | **object**
Specifies ranges of integer, continuous, and categorical hyperparameters
that a hyperparameter tuning job searches. The hyperparameter tuning job
launches training jobs with hyperparameter values within these ranges to
find the combination of values that result in the training job with the best
performance as measured by the objective metric of the hyperparameter tuning
job.
The maximum number of items specified for Array Members refers to the maximum
number of hyperparameters for each range and also the maximum for the hyperparameter
tuning job itself. That is, the sum of the number of hyperparameters for
all the ranges can’t exceed the maximum number specified. |
| **trainingJobDefinitions.[].hyperParameterRanges.autoParameters**
Optional | **array**
|
| **trainingJobDefinitions.[].hyperParameterRanges.autoParameters.[]**
Required | **object**
The name and an example value of the hyperparameter that you want to use
in Autotune. If Automatic model tuning (AMT) determines that your hyperparameter
is eligible for Autotune, an optimal hyperparameter range is selected for
you. || **trainingJobDefinitions.[].hyperParameterRanges.autoParameters.[].name**
Optional | **string**
|
| **trainingJobDefinitions.[].hyperParameterRanges.autoParameters.[].valueHint**
Optional | **string**
|
| **trainingJobDefinitions.[].hyperParameterRanges.categoricalParameterRanges**
Optional | **array**
|
| **trainingJobDefinitions.[].hyperParameterRanges.categoricalParameterRanges.[]**
Required | **object**
A list of categorical hyperparameters to tune. || **trainingJobDefinitions.[].hyperParameterRanges.categoricalParameterRanges.[].name**
Optional | **string**
|
| **trainingJobDefinitions.[].hyperParameterRanges.categoricalParameterRanges.[].values**
Optional | **array**
|
| **trainingJobDefinitions.[].hyperParameterRanges.categoricalParameterRanges.[].values.[]**
Required | **string**
|| **trainingJobDefinitions.[].hyperParameterRanges.continuousParameterRanges**
Optional | **array**
|
| **trainingJobDefinitions.[].hyperParameterRanges.continuousParameterRanges.[]**
Required | **object**
A list of continuous hyperparameters to tune. || **trainingJobDefinitions.[].hyperParameterRanges.continuousParameterRanges.[].maxValue**
Optional | **string**
|
| **trainingJobDefinitions.[].hyperParameterRanges.continuousParameterRanges.[].minValue**
Optional | **string**
|
| **trainingJobDefinitions.[].hyperParameterRanges.continuousParameterRanges.[].name**
Optional | **string**
|
| **trainingJobDefinitions.[].hyperParameterRanges.continuousParameterRanges.[].scalingType**
Optional | **string**
|
| **trainingJobDefinitions.[].hyperParameterRanges.integerParameterRanges**
Optional | **array**
|
| **trainingJobDefinitions.[].hyperParameterRanges.integerParameterRanges.[]**
Required | **object**
For a hyperparameter of the integer type, specifies the range that a hyperparameter
tuning job searches. || **trainingJobDefinitions.[].hyperParameterRanges.integerParameterRanges.[].maxValue**
Optional | **string**
|
| **trainingJobDefinitions.[].hyperParameterRanges.integerParameterRanges.[].minValue**
Optional | **string**
|
| **trainingJobDefinitions.[].hyperParameterRanges.integerParameterRanges.[].name**
Optional | **string**
|
| **trainingJobDefinitions.[].hyperParameterRanges.integerParameterRanges.[].scalingType**
Optional | **string**
|
| **trainingJobDefinitions.[].inputDataConfig**
Optional | **array**
|
| **trainingJobDefinitions.[].inputDataConfig.[]**
Required | **object**
A channel is a named input source that training algorithms can consume. || **trainingJobDefinitions.[].inputDataConfig.[].channelName**
Optional | **string**
|
| **trainingJobDefinitions.[].inputDataConfig.[].compressionType**
Optional | **string**
|
| **trainingJobDefinitions.[].inputDataConfig.[].contentType**
Optional | **string**
|
| **trainingJobDefinitions.[].inputDataConfig.[].dataSource**
Optional | **object**
Describes the location of the channel data. |
| **trainingJobDefinitions.[].inputDataConfig.[].dataSource.fileSystemDataSource**
Optional | **object**
Specifies a file system data source for a channel. |
| **trainingJobDefinitions.[].inputDataConfig.[].dataSource.fileSystemDataSource.directoryPath**
Optional | **string**
|
| **trainingJobDefinitions.[].inputDataConfig.[].dataSource.fileSystemDataSource.fileSystemAccessMode**
Optional | **string**
|
| **trainingJobDefinitions.[].inputDataConfig.[].dataSource.fileSystemDataSource.fileSystemID**
Optional | **string**
|
| **trainingJobDefinitions.[].inputDataConfig.[].dataSource.fileSystemDataSource.fileSystemType**
Optional | **string**
|
| **trainingJobDefinitions.[].inputDataConfig.[].dataSource.s3DataSource**
Optional | **object**
Describes the S3 data source.
Your input bucket must be in the same Amazon Web Services region as your
training job. |
| **trainingJobDefinitions.[].inputDataConfig.[].dataSource.s3DataSource.attributeNames**
Optional | **array**
|
| **trainingJobDefinitions.[].inputDataConfig.[].dataSource.s3DataSource.attributeNames.[]**
Required | **string**
|| **trainingJobDefinitions.[].inputDataConfig.[].dataSource.s3DataSource.instanceGroupNames**
Optional | **array**
|
| **trainingJobDefinitions.[].inputDataConfig.[].dataSource.s3DataSource.instanceGroupNames.[]**
Required | **string**
|| **trainingJobDefinitions.[].inputDataConfig.[].dataSource.s3DataSource.s3DataDistributionType**
Optional | **string**
|
| **trainingJobDefinitions.[].inputDataConfig.[].dataSource.s3DataSource.s3DataType**
Optional | **string**
|
| **trainingJobDefinitions.[].inputDataConfig.[].dataSource.s3DataSource.s3URI**
Optional | **string**
|
| **trainingJobDefinitions.[].inputDataConfig.[].inputMode**
Optional | **string**
The training input mode that the algorithm supports. For more information
about input modes, see Algorithms (https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html).
Pipe mode
If an algorithm supports Pipe mode, Amazon SageMaker streams data directly
from Amazon S3 to the container.
File mode
If an algorithm supports File mode, SageMaker downloads the training data
from S3 to the provisioned ML storage volume, and mounts the directory to
the Docker volume for the training container.
You must provision the ML storage volume with sufficient capacity to accommodate
the data downloaded from S3. In addition to the training data, the ML storage
volume also stores the output model. The algorithm container uses the ML
storage volume to also store intermediate information, if any.
For distributed algorithms, training data is distributed uniformly. Your
training duration is predictable if the input data objects sizes are approximately
the same. SageMaker does not split the files any further for model training.
If the object sizes are skewed, training won’t be optimal as the data distribution
is also skewed when one host in a training cluster is overloaded, thus becoming
a bottleneck in training.
FastFile mode
If an algorithm supports FastFile mode, SageMaker streams data directly from
S3 to the container with no code changes, and provides file system access
to the data. Users can author their training script to interact with these
files as if they were stored on disk.
FastFile mode works best when the data is read sequentially. Augmented manifest
files aren’t supported. The startup time is lower when there are fewer files
in the S3 bucket provided. |
| **trainingJobDefinitions.[].inputDataConfig.[].recordWrapperType**
Optional | **string**
|
| **trainingJobDefinitions.[].inputDataConfig.[].shuffleConfig**
Optional | **object**
A configuration for a shuffle option for input data in a channel. If you
use S3Prefix for S3DataType, the results of the S3 key prefix matches are
shuffled. If you use ManifestFile, the order of the S3 object references
in the ManifestFile is shuffled. If you use AugmentedManifestFile, the order
of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling
order is determined using the Seed value.
For Pipe input mode, when ShuffleConfig is specified shuffling is done at
the start of every epoch. With large datasets, this ensures that the order
of the training data is different for each epoch, and it helps reduce bias
and possible overfitting. In a multi-node training job when ShuffleConfig
is combined with S3DataDistributionType of ShardedByS3Key, the data is shuffled
across nodes so that the content sent to a particular node on the first epoch
might be sent to a different node on the second epoch. |
| **trainingJobDefinitions.[].inputDataConfig.[].shuffleConfig.seed**
Optional | **integer**
|
| **trainingJobDefinitions.[].outputDataConfig**
Optional | **object**
Provides information about how to store model training results (model artifacts). |
| **trainingJobDefinitions.[].outputDataConfig.compressionType**
Optional | **string**
|
| **trainingJobDefinitions.[].outputDataConfig.kmsKeyID**
Optional | **string**
|
| **trainingJobDefinitions.[].outputDataConfig.s3OutputPath**
Optional | **string**
|
| **trainingJobDefinitions.[].resourceConfig**
Optional | **object**
Describes the resources, including machine learning (ML) compute instances
and ML storage volumes, to use for model training. |
| **trainingJobDefinitions.[].resourceConfig.instanceCount**
Optional | **integer**
|
| **trainingJobDefinitions.[].resourceConfig.instanceGroups**
Optional | **array**
|
| **trainingJobDefinitions.[].resourceConfig.instanceGroups.[]**
Required | **object**
Defines an instance group for heterogeneous cluster training. When requesting
a training job using the CreateTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html)
API, you can configure multiple instance groups . || **trainingJobDefinitions.[].resourceConfig.instanceGroups.[].instanceCount**
Optional | **integer**
|
| **trainingJobDefinitions.[].resourceConfig.instanceGroups.[].instanceGroupName**
Optional | **string**
|
| **trainingJobDefinitions.[].resourceConfig.instanceGroups.[].instanceType**
Optional | **string**
|
| **trainingJobDefinitions.[].resourceConfig.instanceType**
Optional | **string**
|
| **trainingJobDefinitions.[].resourceConfig.keepAlivePeriodInSeconds**
Optional | **integer**
Optional. Customer requested period in seconds for which the Training cluster
is kept alive after the job is finished. |
| **trainingJobDefinitions.[].resourceConfig.volumeKMSKeyID**
Optional | **string**
|
| **trainingJobDefinitions.[].resourceConfig.volumeSizeInGB**
Optional | **integer**
|
| **trainingJobDefinitions.[].retryStrategy**
Optional | **object**
The retry strategy to use when a training job fails due to an InternalServerError.
RetryStrategy is specified as part of the CreateTrainingJob and CreateHyperParameterTuningJob
requests. You can add the StoppingCondition parameter to the request to limit
the training time for the complete job. |
| **trainingJobDefinitions.[].retryStrategy.maximumRetryAttempts**
Optional | **integer**
|
| **trainingJobDefinitions.[].roleARN**
Optional | **string**
|
| **trainingJobDefinitions.[].staticHyperParameters**
Optional | **object**
|
| **trainingJobDefinitions.[].stoppingCondition**
Optional | **object**
Specifies a limit to how long a model training job or model compilation job
can run. It also specifies how long a managed spot training job has to complete.
When the job reaches the time limit, SageMaker ends the training or compilation
job. Use this API to cap model training costs.
To stop a training job, SageMaker sends the algorithm the SIGTERM signal,
which delays job termination for 120 seconds. Algorithms can use this 120-second
window to save the model artifacts, so the results of training are not lost.
The training algorithms provided by SageMaker automatically save the intermediate
results of a model training job when possible. This attempt to save artifacts
is only a best effort case as model might not be in a state from which it
can be saved. For example, if training has just started, the model might
not be ready to save. When saved, this intermediate data is a valid model
artifact. You can use it to create a model with CreateModel.
The Neural Topic Model (NTM) currently does not support saving intermediate
model artifacts. When training NTMs, make sure that the maximum runtime is
sufficient for the training job to complete. |
| **trainingJobDefinitions.[].stoppingCondition.maxPendingTimeInSeconds**
Optional | **integer**
Maximum job scheduler pending time in seconds. |
| **trainingJobDefinitions.[].stoppingCondition.maxRuntimeInSeconds**
Optional | **integer**
|
| **trainingJobDefinitions.[].stoppingCondition.maxWaitTimeInSeconds**
Optional | **integer**
|
| **trainingJobDefinitions.[].tuningObjective**
Optional | **object**
Defines the objective metric for a hyperparameter tuning job. Hyperparameter
tuning uses the value of this metric to evaluate the training jobs it launches,
and returns the training job that results in either the highest or lowest
value for this metric, depending on the value you specify for the Type parameter.
If you want to define a custom objective metric, see Define metrics and environment
variables (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html). |
| **trainingJobDefinitions.[].tuningObjective.metricName**
Optional | **string**
|
| **trainingJobDefinitions.[].tuningObjective.type_**
Optional | **string**
|
| **trainingJobDefinitions.[].vpcConfig**
Optional | **object**
Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs,
hosted models, and compute resources have access to. You can control access
to and from your resources by configuring a VPC. For more information, see
Give SageMaker Access to Resources in your Amazon VPC (https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html). |
| **trainingJobDefinitions.[].vpcConfig.securityGroupIDs**
Optional | **array**
|
| **trainingJobDefinitions.[].vpcConfig.securityGroupIDs.[]**
Required | **string**
|| **trainingJobDefinitions.[].vpcConfig.subnets**
Optional | **array**
|
| **trainingJobDefinitions.[].vpcConfig.subnets.[]**
Required | **string**
|| **warmStartConfig**
Optional | **object**
Specifies the configuration for starting the hyperparameter tuning job using
one or more previous tuning jobs as a starting point. The results of previous
tuning jobs are used to inform which combinations of hyperparameters to search
over in the new tuning job.
All training jobs launched by the new hyperparameter tuning job are evaluated
by using the objective metric. If you specify IDENTICAL_DATA_AND_ALGORITHM
as the WarmStartType value for the warm start configuration, the training
job that performs the best in the new tuning job is compared to the best
training jobs from the parent tuning jobs. From these, the training job that
performs the best as measured by the objective metric is returned as the
overall best training job.
All training jobs launched by parent hyperparameter tuning jobs and the new
hyperparameter tuning jobs count against the limit of training jobs for the
tuning job. |
| **warmStartConfig.parentHyperParameterTuningJobs**
Optional | **array**
|
| **warmStartConfig.parentHyperParameterTuningJobs.[]**
Required | **object**
A previously completed or stopped hyperparameter tuning job to be used as
a starting point for a new hyperparameter tuning job. || **warmStartConfig.parentHyperParameterTuningJobs.[].hyperParameterTuningJobName**
Optional | **string**
|
| **warmStartConfig.warmStartType**
Optional | **string**
|
Status
ackResourceMetadata:
arn: string
ownerAccountID: string
region: string
bestTrainingJob:
creationTime: string
failureReason: string
finalHyperParameterTuningJobObjectiveMetric:
metricName: string
type_: string
value: number
objectiveStatus: string
trainingEndTime: string
trainingJobARN: string
trainingJobDefinitionName: string
trainingJobName: string
trainingJobStatus: string
trainingStartTime: string
tunedHyperParameters: {}
tuningJobName: string
conditions:
- lastTransitionTime: string
message: string
reason: string
status: string
type: string
failureReason: string
hyperParameterTuningJobStatus: string
overallBestTrainingJob:
creationTime: string
failureReason: string
finalHyperParameterTuningJobObjectiveMetric:
metricName: string
type_: string
value: number
objectiveStatus: string
trainingEndTime: string
trainingJobARN: string
trainingJobDefinitionName: string
trainingJobName: string
trainingJobStatus: string
trainingStartTime: string
tunedHyperParameters: {}
tuningJobName: string
Field | Description |
---|---|
ackResourceMetadata Optional | object All CRs managed by ACK have a common Status.ACKResourceMetadata memberthat is used to contain resource sync state, account ownership, constructed ARN for the resource |
ackResourceMetadata.arn Optional | string ARN is the Amazon Resource Name for the resource. This is a globally-unique identifier and is set only by the ACK service controller once the controller has orchestrated the creation of the resource OR when it has verified that an “adopted” resource (a resource where the ARN annotation was set by the Kubernetes user on the CR) exists and matches the supplied CR’s Spec field values. TODO(vijat@): Find a better strategy for resources that do not have ARN in CreateOutputResponse https://github.com/aws/aws-controllers-k8s/issues/270 |
ackResourceMetadata.ownerAccountID Required | string OwnerAccountID is the AWS Account ID of the account that owns the backend AWS service API resource. |
ackResourceMetadata.region Required | string Region is the AWS region in which the resource exists or will exist. |
bestTrainingJob Optional | object A TrainingJobSummary (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TrainingJobSummary.html) object that describes the training job that completed with the best current HyperParameterTuningJobObjective (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobObjective.html). |
bestTrainingJob.creationTime Optional | string |
bestTrainingJob.failureReason Optional | string |
bestTrainingJob.finalHyperParameterTuningJobObjectiveMetric Optional | object Shows the latest objective metric emitted by a training job that was launched by a hyperparameter tuning job. You define the objective metric in the HyperParameterTuningJobObjective parameter of HyperParameterTuningJobConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html). |
bestTrainingJob.finalHyperParameterTuningJobObjectiveMetric.metricName Optional | string |
**bestTrainingJob.finalHyperParameterTuningJobObjectiveMetric.type_** Optional | string |
bestTrainingJob.finalHyperParameterTuningJobObjectiveMetric.value Optional | number |
bestTrainingJob.objectiveStatus Optional | string |
bestTrainingJob.trainingEndTime Optional | string |
bestTrainingJob.trainingJobARN Optional | string |
bestTrainingJob.trainingJobDefinitionName Optional | string |
bestTrainingJob.trainingJobName Optional | string |
bestTrainingJob.trainingJobStatus Optional | string |
bestTrainingJob.trainingStartTime Optional | string |
bestTrainingJob.tunedHyperParameters Optional | object |
bestTrainingJob.tuningJobName Optional | string |
conditions Optional | array All CRS managed by ACK have a common Status.Conditions member thatcontains a collection of ackv1alpha1.Condition objects that describethe various terminal states of the CR and its backend AWS service API resource |
conditions.[] Required | object Condition is the common struct used by all CRDs managed by ACK service |
controllers to indicate terminal states of the CR and its backend AWS | |
service API resource | |
conditions.[].message Optional | string A human readable message indicating details about the transition. |
conditions.[].reason Optional | string The reason for the condition’s last transition. |
conditions.[].status Optional | string Status of the condition, one of True, False, Unknown. |
conditions.[].type Optional | string Type is the type of the Condition |
failureReason Optional | string If the tuning job failed, the reason it failed. |
hyperParameterTuningJobStatus Optional | string The status of the tuning job. |
overallBestTrainingJob Optional | object If the hyperparameter tuning job is an warm start tuning job with a WarmStartType of IDENTICAL_DATA_AND_ALGORITHM, this is the TrainingJobSummary (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TrainingJobSummary.html) for the training job with the best objective metric value of all training jobs launched by this tuning job and all parent jobs specified for the warm start tuning job. |
overallBestTrainingJob.creationTime Optional | string |
overallBestTrainingJob.failureReason Optional | string |
overallBestTrainingJob.finalHyperParameterTuningJobObjectiveMetric Optional | object Shows the latest objective metric emitted by a training job that was launched by a hyperparameter tuning job. You define the objective metric in the HyperParameterTuningJobObjective parameter of HyperParameterTuningJobConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html). |
overallBestTrainingJob.finalHyperParameterTuningJobObjectiveMetric.metricName Optional | string |
**overallBestTrainingJob.finalHyperParameterTuningJobObjectiveMetric.type_** Optional | string |
overallBestTrainingJob.finalHyperParameterTuningJobObjectiveMetric.value Optional | number |
overallBestTrainingJob.objectiveStatus Optional | string |
overallBestTrainingJob.trainingEndTime Optional | string |
overallBestTrainingJob.trainingJobARN Optional | string |
overallBestTrainingJob.trainingJobDefinitionName Optional | string |
overallBestTrainingJob.trainingJobName Optional | string |
overallBestTrainingJob.trainingJobStatus Optional | string |
overallBestTrainingJob.trainingStartTime Optional | string |
overallBestTrainingJob.tunedHyperParameters Optional | object |
overallBestTrainingJob.tuningJobName Optional | string |